If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m^2+16m-20=0
a = 1; b = 16; c = -20;
Δ = b2-4ac
Δ = 162-4·1·(-20)
Δ = 336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{336}=\sqrt{16*21}=\sqrt{16}*\sqrt{21}=4\sqrt{21}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4\sqrt{21}}{2*1}=\frac{-16-4\sqrt{21}}{2} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4\sqrt{21}}{2*1}=\frac{-16+4\sqrt{21}}{2} $
| m6-(m/6)-8=0 | | z2z-4-z=4 | | m^2+26m-20=0 | | 0.9^x=3 | | (n+3)+2(n+3)=3 | | 5(3x+9)-2x=15x-2)x-5) | | -4r-5r=30 | | 6(3x+9)-2x=15x-2(x-5) | | 28+7x=20+1x | | 5×+4y=160 | | 9=3(5x2) | | 8x-3x+6=5x-2 | | 2.5k=30+k | | 8x-3x+6=5x-3 | | 4(2x4)-2x=6x+8 | | r^2-4r-62=0 | | 5x2+30x+14=2-2x. | | N+3=2n-15 | | 2(5x-2)=8x+8* | | 5s*7=105 | | 3x-108=180 | | -5j-3=1 | | 4^5x-2=9 | | a18=3362,a38=7362 | | 82x-9=180 | | 2m-6+2=14 | | 3x-6=-2x=9 | | 14x-8-7x=2(4x-8)+8 | | 85-y=40 | | 5x+25x+5=25 | | 9(2x-3)=12×+4+6x | | 25+p-3=30 |